Really hope I'm right coz this took me forever. Also sorry for bad LaTeX.
Let
where
This is easily evaluated depending on the different cases:
If
![](https://latex.codecogs.com/png.latex?\bg_white a>1)
or
![](https://latex.codecogs.com/png.latex?\bg_white a<-1)
, we have
![](https://latex.codecogs.com/png.latex?\bg_white J = -\pi)
, if
![](https://latex.codecogs.com/png.latex?\bg_white -1<a<1)
then
![](https://latex.codecogs.com/png.latex?\bg_white C>0)
and
![](https://latex.codecogs.com/png.latex?\bg_white J = \pi)
, and if
![](https://latex.codecogs.com/png.latex?\bg_white a=-1)
then
![](https://latex.codecogs.com/png.latex?\bg_white C=)
and
![](https://latex.codecogs.com/png.latex?\bg_white J=0)
.
Case 1:
![](https://latex.codecogs.com/png.latex?\bg_white \frac{\mathrm{d}I}{\mathrm{d}a} = \frac{\pi}{a} - \frac{\pi}{a} = 0)
hence
![](https://latex.codecogs.com/png.latex?\bg_white I =C)
for some constant
![](https://latex.codecogs.com/png.latex?\bg_white C)
.
Evaluating the integral for
![](https://latex.codecogs.com/png.latex?\bg_white a=0)
, we obtain that:
![](https://latex.codecogs.com/png.latex?\bg_white I=0)
when
![](https://latex.codecogs.com/png.latex?\bg_white -1<a<1)
.
Case
![](https://latex.codecogs.com/png.latex?\bg_white a>1)
or
![](https://latex.codecogs.com/png.latex?\bg_white a<-1)
.
![](https://latex.codecogs.com/png.latex?\bg_white I=\int_0^{\pi} \mathrm{ln}(1+2a\mathrm{cos}(x)+a^2)\mathrm{d}x = \int_0^{\pi} \mathrm{ln}(1+2\frac{1}{a}\mathrm{cos}(x)+\frac{1}{a^2})\mathrm{d}x + \int_0^{\pi} 2\mathrm{ln}a\mathrm{d}x = 0 + 2\pi \mathrm{ln}(a))
(which follows from Case 1).
![](https://latex.codecogs.com/png.latex?\bg_white I = 2\pi \mathrm{ln}(a))
when
![](https://latex.codecogs.com/png.latex?\bg_white a>1)
or
![](https://latex.codecogs.com/png.latex?\bg_white a<-1)
.
Case 3:
Let
By symmetry,
Let
By symmetry,
Therefore
![](https://latex.codecogs.com/png.latex?\bg_white 2L = -\frac{\pi}{2}\mathrm{ln}(2) + L)
, so
![](https://latex.codecogs.com/png.latex?\bg_white L = -\frac{\pi}{2}\mathrm{ln}(2))
.
Subbing the values back in, we obtain
![](https://latex.codecogs.com/png.latex?\bg_white I=0)
.
Case 4:
This can be done by the same method as case 3, and so
![](https://latex.codecogs.com/png.latex?\bg_white I=0)
.
Hence, when
![](https://latex.codecogs.com/png.latex?\bg_white -1\leq a \leq 1)
,
![](https://latex.codecogs.com/png.latex?\bg_white I=0)
, and
![](https://latex.codecogs.com/png.latex?\bg_white I=2\pi \mathrm{ln}(a))
otherwise.