MedVision ad

Search results

  1. rolpsy

    Complex Numbers Help

    Let the root be α. Since the coefficients are real, roots are in conjugate pairs. Hence the other root is α* (conjugate). Using the product of roots \begin{align*}\alpha \times \overline{\alpha} &= \frac{1}{1}\\|\alpha|^2 &=1\\|\alpha| &=1 && \text{since } |\alpha| >...
  2. rolpsy

    Proof by Induction - Inequalities

    okay I'll assume you mean prove 2n < 3n. First note that you don't need induction to prove this – you can simply raise both sides of 2 < 3 to the power of n (as both sides are greater than zero & xn is strictly increasing for x > 0). However, using induction: 1. The base case is obvious...
  3. rolpsy

    defeinite Integral

    well you can let f(x) = 5/2 which satisfies all of the properties then \begin{align*}\int_{0}^{50} f(x) \, \mathrm{d}x &= 50 \times \frac{5}{2}\\&=125\end{align*}
  4. rolpsy

    integral

    I used texshop (latex) with the pstricks package (completely free) latex pstricks
  5. rolpsy

    integral

  6. rolpsy

    integral

    I think the answer is: \frac{1}{2}\left [x \right ] \left ( \left [ x \right ] - 2 \right )
  7. rolpsy

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon \begin{align*}I &= \int^{\sqrt{\ln(3)}}_{\sqrt{\ln(2)}} \frac{x\sin(x^2)}{\sin(x^2) + \sin(\ln(6) - x^2)} \, \mathrm{d}x\\&= \frac{1}{2}\int^{\ln(3)}_{\ln(2)} \frac{\sin(x)}{\sin(x) + \sin(\ln(6) - x)} \, \mathrm{d}x\\&= \frac{1}{2}\int^{\ln(3)}_{\ln(2)}...
  8. rolpsy

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon :cool: good job i did it a similar way: \begin{align*}\text{Set } G(t) = \int^{1}_{0} \frac{x^t-1}{\ln(x)}\, \mathrm{d}x \textup{, so that } G'(t) &= \frac{\mathrm{d} }{\mathrm{d} t}\int^{1}_{0} \frac{x^t-1}{\ln(x)} \, \mathrm{d}x\\&= \int^{1}_{0} \frac{\partial...
  9. rolpsy

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon new question: find \int^{1}_{0} \frac{x^{n-1}-1}{\ln(x)} \, \mathrm{d}x, \quad n>0 or something easier \int \frac{2}{\left (\cos(x) - \sin(x) \right )^2} \, \mathrm{d}x
  10. rolpsy

    A Gift to the BOS Community

    Wow. This is incredibly generous of you spiral. Thank you!
  11. rolpsy

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon 5th line should be (note limits of last two integrals) \\\int^{\frac{\pi}{2}}_0 x\cot(x) \, \mathrm{d}x + \frac{\pi}{2}\int^{\frac{\pi}{2}}_0 \csc(x) - \cot(x) \, \mathrm{d}x + \int^{\frac{\pi}{2}}_0 (x-\pi)\cot(x) \, \mathrm{d}x\\+...
  12. rolpsy

    Trial paper problem

    remember that mv2/r is the resultant force (horizontally); the other forces must add to give this. the same principle applies when you resolve this resultant force into its components. to convince yourself, resolve horizontally and vertically, then solve simultaneously (times vertical by...
  13. rolpsy

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon yup
  14. rolpsy

    Trial paper problem

    okay here's 5(a) Resolving forces along the bank can be tricky. If all else fails, resolve horizontally and vertically, then solve simultaneously.
  15. rolpsy

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon sorry, nope (although interested to know your method) s/he's using properties of definite integrals, namely \int^a_0 f(x) \, \mathrm{d}x = \int^a_0 f(a-x) \, \mathrm{d}x also tan(pi/2 - x) = cot(x) :p
  16. rolpsy

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon lol you forgot to integrate! \int^{\frac{\pi}{4}}_{0} \ln(2) \, \mathrm{d}x = \frac{\pi}{4}\ln(2) which gives the correct answer here is a really difficult one: \int^{\frac{\pi}{2}}_{0} \frac{x}{\tan(x)} \, \mathrm{d}x good luck
  17. rolpsy

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon I = \int^1_0 \frac{\ln(x+1)}{1+x^2} \, \mathrm{d}x\\\\\begin{align*}\textup{Let } x = \frac{1-u}{1+u} = \frac{2}{1+u} - 1 \textup{, so } \mathrm{d}x = -\frac{2}{(1+u)^2} \, \mathrm{d}u\end{align*}\\\begin{align*}I &= \int^0_1 \frac{\ln\left ( \frac{2}{1+u}...
  18. rolpsy

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon \begin{align*}\int \sin^{12}\left ( 7x \right )\cos^{3}\left ( 7x \right ) \, \mathrm{d}x &= \int \sin^{12}\left ( 7x \right )\cos\left ( 7x \right ) -\sin^{14}\left ( 7x \right )\cos\left ( 7x \right ) \, \mathrm{d}x\\&=\frac{1}{7\times13}\sin^{13}(7x) -...
  19. rolpsy

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon good job :cool:. after simplification it becomes: \frac{1}{\sqrt{2}} \ln \left (1 + \sqrt{2} \right ) next: \int_0^{\frac{\pi}{2}} \frac{\cos^{2012}(x)}{\sin^{2012}(x) + \cos^{2012}(x)} \, \mathrm{d}x edit: \\\textup{Roots of } u^4 + 1...
  20. rolpsy

    HSC 2012-14 MX2 Integration Marathon (archive)

    Re: MX2 Integration Marathon \int ^{\frac{\pi}{2}}_0 \frac{\sin(x)}{1 + \sin^2(x)} \, \mathrm{d}x
Top