Professor X
New Member
- Joined
- Aug 8, 2009
- Messages
- 1
- Gender
- Male
- HSC
- N/A
Re: Australian Mathematics Competition
![](https://latex.codecogs.com/png.latex?\bg_white $Any 4 digit palindrome can be expressed in the form:$)
![](https://latex.codecogs.com/png.latex?\bg_white $1001x + 110y$)
![](https://latex.codecogs.com/png.latex?\bg_white $We wish to determine which of these are divisible by 7$)
![](https://latex.codecogs.com/png.latex?\bg_white $Note the following$)
![](https://latex.codecogs.com/png.latex?\bg_white 7 | 1001 \implies 7 | 1001x)
![](https://latex.codecogs.com/png.latex?\bg_white 7 \nmid 110)
![](https://latex.codecogs.com/png.latex?\bg_white $Hence if the palindrome is a multiple of 7, then$)
![](https://latex.codecogs.com/png.latex?\bg_white 7 | y)
![](https://latex.codecogs.com/png.latex?\bg_white \therefore \,\,$y is a multiple of 7. Furthermore note that$\,\,y \in \left(0,1,2,. . ., 8, 9\right)\,\,$)
![](https://latex.codecogs.com/png.latex?\bg_white \therefore y \in \left(0,7\right))
![](https://latex.codecogs.com/png.latex?\bg_white $Note that$\,\, x \in \left(1,2,3,. . .,8,9\right)\,\,$. Hence for every value of x there is 2 such values of y that give a palendrome that is divisible by 7$)
![](https://latex.codecogs.com/png.latex?\bg_white $Therefore the total number of 4-digit palendromes that are divisible by 7 is$)
![](https://latex.codecogs.com/png.latex?\bg_white 9 \times 2 = \boxed{18})
for the divisible by 7 one, I basically listed all the two digit numbers from 11 - 99 inclusive, and then reversed them.
e.g.
1111
1221
1331
1441
1551
etc
I know that the answer is definitely more than 15.